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Società Italiana di Fisica
Springer-Verlag 1999

Doping and temperature dependence of the spin susceptibility
in the p-d model

R. Citro1,a and M. Marinaro1,2

1 Dipartimento di Scienze Fisiche “E.R. Caianiello”, Università di Salerno, 84081 Baronissi (Salerno) and Unità INFM
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Abstract. The spin magnetic susceptibility of the p-d model is calculated by means of a perturbation
theory in the hybridization term V through a generalized cumulant expansion (GCE). The analysis is
approached from the paramagnetic metallic phase. The results qualitatively reproduce some unusual mag-
netic properties in the normal state of the hole-doped cuprates, supporting the scenario of a Van Hove
singularity near the Fermi level.

PACS. 74.25.Ha Magnetic properties – 74.72.-h High-Tc compounds – 78.20.Bh Theory, models, and
numerical simulation

1 Introduction

The presence of antiferromagnetic correlations in the
Cu−O planes of cuprate materials is believed to have im-
portant implications for the pairing mechanism in high-
Tc superconductors (HTCS). In this context, a study of
the magnetic properties of these materials is of some rel-
evance, especially in connection to the normal phase “un-
usual” magnetic properties experimentally observed. In
the case of the La2−xSrxCuO4, system, studies of the uni-
form spin magnetic susceptibility χs have shown two prop-
erties in the metallic state which might be related to the
onset of superconductivity [1,2]:
a) at a fixed temperature, χs increases with increasing
doping, reaching a maximum in the vicinity of x ' 0.26,
then decreases;
b) at a fixed doping, changing the temperature, χs reaches
a maximum at a finite temperature Tm that goes to zero
as the material is doped with holes near x ' 0.26.

Similar behaviour has been observed in
other ceramic samples as YBa2Cu3O6+x [3,4] or
Pb2Sr2Y1−xCaxO6xCu3O8+d [5]. An interesting aspect
is that some of the cuprate alloys [6] exhibit a nearly
T -independent susceptibility above the critical tem-
perature Tc, and the magnitude of χs corresponds to
a conventional metallic density of states. However, an
anomalous decrease in χs as T is lowered towards the
superconducting transition has been observed [1,7] in
numerous cuprates at selected oxygen compositions. This
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unexplained behaviour provides the primary motivation
for the present work.

Based on recent NMR and photoemission spectroscopy
data [8,9] a Van Hove scenario for HTCS has been pro-
posed [10,11], in which the above “unusual” magnetic
properties are explained in terms of the Fermi level po-
sition lying very close to the Van Hove singularity (VHS)
in the density of states over a substantial range of dop-
ing. Also the direct experimental verifications [12,13] of
a “pseudogap” in the density of states of electrons in the
metallic layers of cuprate high temperature superconduc-
tors in the underdoped regime is considered to be one
of the key elements to guide us in the comprehension of
the “unusual” properties in these materials. It has been
pointed out [14] that a pseudogap structure in the density
of states may be relevant to the susceptibility downturn
at low T . Furthermore, examples of an upturn in suscepti-
bility at low T have also been discovered [1,15] in certain
compositions of cuprates that display metallic transport
properties, and such cases present yet another theoretical
challenge.

From a theoretical point of view we calculate the spin
magnetic susceptibility in the p − d model within a per-
turbation theory around the atomic limit, based on a gen-
eralized cumulant expansion (GCE). We will approach
the analysis from the paramagnetic metallic phase rather
than the antiferromagnetic case (small x). The goal of
the present study is to explain a wide range of anoma-
lous susceptibility variation seen in cuprates in terms of
a simple Van Hove singularity of the electronic density of
states, which arises from the nearest neighbour hybridiza-
tion term between the p and d orbitals in the CuO2 planes.



236 The European Physical Journal B

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

O p

Cu d 

x

x  y 2 2

V
O p

O p

xx

x

y

−

− − −

− − −

−

−−

− −

Fig. 1. Orbitals and hopping term included in the p-d model
Hamiltonian.

In the approach presented here, the local part of the
Hamiltonian containing the on-site Coulomb repulsion Ud
is solved exactly and the hybridization term is introduced
as a perturbation. We can point out such a merit of this
perturbative approach that it is expected to describe the
normal state in the intermediate and large-U regime more
accurately than a simple tight-binding approach [16] or a
weak coupling perturbation theory [17]. In this sense, it is
useful to study how correlation effects modify the behav-
ior of the physical quantities in the Fermi-liquid phase and
cause anomalous behavior. Moreover, the approach is free
from size effects compared with numerical simulations,
and situable for the description of the low-energy prop-
erties and the phase transition such as metal-insulator
transitions (MIT). On the other hand, there exists the
drawback that by introducing the hybridization term as
a perturbation, the presence of the Coulomb interaction
term in the atomic Hamiltonian prevents the application
of the Wick decoupling procedure, and a GCE has to be
introduced.

In order to evaluate the spin susceptibility we utilize
a Bethe-Salpeter equation for the vertex functions taking
into account the correlation effects through the inclusion
of the cumulants of the first and second order. The cal-
culation is performed in the framework of the well-known
finite temperature Green’s function formalism.

2 The model Hamiltonian

Taking into account the characteristic feature of the CuO2

plane, we adopt the p-d model. In this model, tight-
binding holes are composed of Cu− dx2−y2 orbitals which
form a square lattice and O-pα (α = x, y) orbitals which
connect the nearest-neighbour Cu sites (see Fig. 1).

The non-interacting part of the Hamiltonian consists
of site energy terms of d- and p-orbitals and the Coulomb
repulsion Ud on each d-orbital. As for the interaction, we

consider the transfer term between nearest-neighbor d-
and p-orbitals. Thus we obtain the following Hamiltonian,

H = H0 +H1 (1)

where

H0 = (εp − µ)
∑
k,σ

p†kσpkσ + (εd − µ)
∑
k,σ

d†kσdkσ

+
Ud
N

∑
k,k′

∑
q(6=0)

d†k+q↑d
†
k′−q↓dk′↓dk↑ (2)

H1 =
∑
k,σ

Vk(d†kσpkσ + h.c.), (3)

where d†kσ(dkσ) and p†kσ(pkσ) are the creation (annihila-
tion) operator for d- and p- holes of momentum k and
spin σ, respectively. The site energy of d- and p-holes are
given by (εd−µ) and (εp−µ), µ is the chemical potential.
Finally, Ud represents the on-site Coulomb repulsion be-
tween Cu holes. The bonding orbital pkσ, hybridizing with
the dkσ, orbital is given by the following combination of
pxkσ and pykσ orbitals:

pkσ =
(
γkx
γk

pxkσ −
γky
γk

pykσ

)
, (4)

where γkα = sin(kα/2), (α = x, y). The p-d mixing term
is given by

V 2
k = 2V 2(2− cos kx − cos ky) = 2V γ(k), (5)

where V is the p-d hybridization. In the following calcu-
lation, we put V = 1. The typical order of energy V is
∼ 1 eV, that is ∼ 104 K.

Denoting byH0 the atomic part of the Hamiltonian (1)
and by H1 the hybridization term, the Green’s functions
for p and d operators, at temperature different from zero,
are determined through the standard S-matrix perturba-
tive formula

Gαβ(i− j, τ1 − τ2) = −

〈
Tτc

α
iσ(τ1)cβ†iσ (τ2)S(β)

〉
0

〈S(β)〉0
, (6)

where the underscript (α, β) represents either p- or d-hole
indices and S(β) is given by

S(β) =
∞∑
n=0

(−1)n

n!

∫ β

0

dτ1
∫ β

0

dτ2 . . . . . .
∫ β

0

dτn

× Tτ (H1(τ1) · · · · · ·H1(τn)). (7)

The unperturbed atomic single-particle Green’s functions
G

(0)
pp and G(0)

dd are given by:

G(0)
pp (iων) =

1
iων − (εp − µ)

(8)

and

G
(0)
dd (iων) =

(1− 〈ndσ̄〉0)
iων − (εd − µ)

+
〈ndσ̄〉0

iων − (εd + U − µ)
, (9)
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Fig. 2. Chain-like diagrams for the one-particle Green’s func-
tions. The thin solid and dashed lines, respectively, indicate

the bare Green’s functions G
(0)
dd (i − j) and G

(0)
pp (i − j), while

the wavey line represents the hybridization Vij .

where ων are the fermion Matsubara frequencies at a tem-
perature T , and 〈ndσ̄〉0 is the average number of particles
with spin σ̄ in the d-atomic orbital. In calculating the
full Green’s functions (6), since H0 does not mix p and d
operators, the thermal averages appearing in the expan-
sion can be expressed as products of p- and d-averages,
separately. While the p-averages may be evaluated using
the conventional Wick decoupling scheme, the presence
of the Coulomb interaction term (Ud) in H0 prevents the
application to the d-averages of this procedure. For this
reason, one can apply a nonstandard diagrammatic expan-
sion, analogous to that developed by Metzner [18] for the
one-band Hubbard model. Within this approach, the sim-
plest approximation consists in decoupling the d-averages
of four or more fermionic operators in products of local
pair averages, or equivalently, in taking into account only
the single-site one-particle cumulants. Diagrammatically,
in this approximation, one obtains the chain-like diagrams
(shown in Fig. 2) which can be summed up by means of
a Dyson-like equation leading for G(1)

pp , G
(1)
dd , G

(1)
pd to the

expressions:

G(1)
pp (k, iων) =

G
(0)
pp (iων)

1− V 2
kG

(0)
pp (iων)G(0)

dd (iων)
(10)

G
(1)
dd (k, iων) =

G
(0)
dd (iων)

1− V 2
kG

(0)
pp (iων)G(0)

dd (iων)
(11)

G
(1)
pd (k, iων) = G(0)

pp (iων)VkG
(1)
dd (k, iων). (12)

We call this approximation the “first-order cumulant ex-
pansion” [19–21].

Although starting from the atomic limit, the Green’s
function (10–12) obtained by selecting chain-like diagrams
and summing up the whole series, present a large Fermi-
surface having loosed completely its atomic character.
Therefore, according to experimental data, it seems appro-
priate to compute the physical quantities in the optimal
and overdoped regime (large x), rather than the antifer-
romagnetic (AF) phase (small x). In fact, in this phase
the approximation used underrates the p-d spin fluctua-
tions a la Zhang-Rice which dominate the physics in the
quasi-atomic limit.

The average number of particles in both p- and d- or-
bitals is determined together with the chemical potential,

through the self-consistency relation:

〈nασ〉 = lim
ε→0

β−1
∑
ων

eiωνε
1
N

∑
kσ

Gαα,σ(k, iων). (13)

Finally, remembering that spin magnetic susceptibility re-
flects the thermal averages of the density of states (DOS)
at the Fermi level, in order to interpret the results of χs

and to investigate the role played by the presence of a
sharp feature in it, the DOS for a given spin direction
has been evaluated as a function of the energy from the
knowledge of the one-particle Green’s functions, by means
of the following relation:

ρσ(ω) = − 1
π

Im
∑
k

[
G(1)
ppσ(k, ωn → ω + iη)

+G(1)
ddσ(k, ωn → ω + iη)

]
=

3∑
i=1

∫
d2k

(2π)2
[Ai(k) +Bi(k)] δ (ω − (Ei(k)− µ))

(14)

where (Ei(k)− µ) are the energy spectra calculated from
the poles of the Green’s functions (Eqs. (10, 11)) and
Ai(k), Bi(k) are the corresponding residues. We note that
all these quantities depend on k through the term V 2(k)
from equation (5). Thus equation (14) can be written in
terms of a one-dimensional integral as

ρσ(ω) =
2
π2

3∑
i=1

∫ 1

−1

dxK
(√

1− x2
)

× [Ai(x) +Bi(x)]δ (ω − (Ei(x)− µ)) , (15)

where K
(√

1− x2
)

is the complete elliptic integral of the
first type.

3 The spin susceptibility

We define the spin susceptibility, χαβs (q, iωυ), as

χαβs (q, iωυ) =

(gµB)2

∫ β

0

dτeiωυτ 〈Tτ [Szαq (τ)Szβ−q(0)]〉 (16)

where the superscript (α, β) represents p- and d- hole in-
dices, and Szq is given by

Szq =
1
2

∑
k

[c†k+q↑ck↑ − c
†
k+q↓ck↓] =

1
2

(nq↑ − nq↓) (17)

with nq =
∑
k,σ

c†k+qσckσ. Here, g is the Landè factor and

µB is the Bohr magneton. The magnetic unit is fixed as
gµB/2 = 1.
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Equation (16) can be recast into

χαβs (q, iωυ) = 2
[
χαβ↑↑ (q, iωυ)− χαβ↓↑ (q, iωυ)

]
, (18)

where χαβσσ′(q, iωυ) is the generalized susceptibility in the
“particle-hole” channel, defined as

χαβσσ′(q, iωυ) =
∫ β

0

dτeiωυτ 〈Tτ
∑
k

cα†k+qσ(τ)cβkσ(τ)

×
∑
p

cα†p+qσ′(0)cβpσ′(0)〉conn, (19)

in which the superscript “conn” denotes the operation
to take into account only the connected diagrams. The
total susceptibility will be obtained by summing up the
four contributions χppσσ′ , χ

dd
σσ′ , χ

dp
σσ′ , and χpdσσ′ . In expand-

ing the right side of equation (19) with respect to the
hybridization term, we pass first from the delocalized to
the site representation for the fermion operators, via the
definition

ckσ =
1√
N

∑
i

ciσeik·Ri. (20)

In this way the problem of evaluating the generalized sus-
ceptibility is reduced to the calculation of a two-particle
Green’s function Gαβ2 (iστ, jσ′0 | iστ, jσ′0). This two-
particle Green’s function can be expressed in terms of the
single-particle propagators and the “irreducible” part by
writing

G2(iστ, jσ′0 | iστ, jσ′0) = G1(iστ)G1(jσ′0)

−G1(iστ | jσ′0)G1(jσ′0 | iστ)δσσ′

+Girr
2 (iστ, jσ′0 | iστ, jσ′0). (21)

The first term on the right of equation (21) does not
contribute to equation (19). For the remaining two’s,
the product of the one-particle Green’s functions cor-
respond to an Hartree-Fock term, while Girr

2 , contains
the vertex-corrections. The Hartree-Fock term provides
“bubble-diagrams” to χαβσσ (see Fig. 3), whose analytic ex-
pression in terms of the Green’s functions (10–12), for a
fixed spin direction, is given by

χ
(1)αβ
↑↑ (q, iωυ) = −β−1

∑
Ων

eiΩνε

×
∫

d2k

(2π)2
G

(1)
↑αβ(k + q, iωυ + iΩν)G(1)

↑αβ(k, iΩν). (22)

In calculating the irreducible part of χαβσσ′ , we first intro-
duce the d- vertex function:

Γσσ′(q, iωυ) =
∫ β

0

dτeiωυτ

× 〈Tτ (d†k+qσ(τ)dkσ(τ)d†k+qσ(0)dkσ(0))〉conn (23)

=

=

=

=

=

=χ χ

χ χ

χ χ

(1)pd (1)pd

(1)pp (1)pp

(1)dd (1)dd

Fig. 3. Diagrams for the Hartree-Fock term in χαβσσ′ . The solid,
dashed and dashed-dotted lines indicate the Green’s functions
G

(1)
dd (i− j), G(1)

pp (i− j) and G
(1)
pd (i− j) in the chain-like approx-

imation.
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Fig. 4. Diagrammatic representation of the Bethe-Salpeter
equation for the vertex function Γσσ′ in the particle-hole chan-
nel.

that can be determined from the Bethe-Salpeter equation
(see Fig. 4)

Γσσ′(q, iωυ) = Γ
(0)
σσ′(iωυ)

+
∑
σ′′

Γ
(0)
σσ′′(iωυ)Πpp

σ′′(q, iων)Γσ′′σ′(q, iωυ),

(24)

where Γ (0)
σσ′(iωυ) is the irreducible vertex function (i.e. a

two-particle single-site cumulant) for the d-holes

Γ
(0)
σσ′(iωυ) =

∫ β

0

dτeiωυτ

× 〈Tτ (d†k+qσ(τ)dkσ(τ)d†k+qσ(0)dkσ(0))〉irr0 , (25)

in which the average is performed with respect
to the atomic Hamiltonian H0 and Πpp

σ (q, iων) is
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Fig. 5. Irreducible vertex Γ
(0)

σσ′ for the two possible choices of
the spin variables in the particle-hole channel.
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Fig. 6. Diagrams for χσσ′ within second order cumulant ex-
pansion.

the polarization insertion

Πpp
σ (q, iων) = −β−1

∑
Ων

eiΩνε

∫
d2k

(2π)2
V 2(k + q)

×G(1)
σpp(k + q, iωυ + iΩν)V 2(k)G(1)

σpp(k, iΩν).

The expressions for the irreducible vertex [22], repre-
sented in Figure 5 in correspondence of the two-possible
spin choices in the particle-hole channel, are reported in
Table 1. The contribution to χ(2)αβ

σσ′ (q, iωυ) coming from
equation (23) is diagrammatically shown in Figure 6 and
analytically given by

χ
(2)dd
σσ′ (q, iωυ) = Γσσ′(q, iωυ)

[
1 + Π̃pd

σ′ (q, iων)
]2

(26)

χ
(2)pp
σσ′ (q, iωυ) = Γσσ′(q, iωυ)Π̃pp2

σ′ (q, iων) (27)

χ
(2)pd
σσ′ (q, iωυ) = χ

(2)dp
σσ′ (q, iωυ) =

Γσσ′(q, iωυ)Π̃pp
σ′ (q, iων)

[
1 + Π̃pd

σ′ (q, iων)
]
, (28)

where

Π̃αβ
σ (q, iων) = −β−1

∑
Ων

eiΩνε

∫
d2k

(2π)2
V (k + q)

×G(1)
σαβ(k + q, iωυ + iΩν)V (k)G(1)

σαβ(k, iΩν).

The superscript (2) indicates that we are taking into
account the two-particle cumulants contained in the ir-
reducible part. We call this approximation the “second-
order cumulant expansion” (SOCE). Combining equa-

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12

14

ω

DOS

Fig. 7. The density of states as a function of the energy ω for
T = 100 K, Ud/V = 5 and εd/V = −1. The arrow indicates
the position of the Fermi level for x = 0.26.

tion (18) with the explicit expressions of χαβσσ′(q, iωυ) =
χ

(1)αβ
σσ′ (q, iωυ) + χ

(2)αβ
σσ′ (q, iωυ) from equation (22) and

equations (26–28), we obtain χs(q, iωυ) in the form

χs(q, iωυ) = −2β−1
∑
αβ

∑
Ων

eiΩνε

∫
d2k

(2π)2

×G(1)αβ
↑ (k + q, iωυ + iΩν)G(1)αβ

↑ (k, iΩν)

+ 2(Γ↑↑ − Γ↑↓)(q, iωυ)
[
1 + Π̃pd

↑ (q, iων) + Π̃pp
↑ (q, iων)

]2
.

(29)

We would like to stress that the “bubble”-diagrams’
contributions, proportional to the single-particle Green’s
functions product, become relevant in the small-U limit
and survive for Ud = 0. This means the approach is ap-
propriate not only to describe the physical quantities in
the large-U limit (strong-coupling regime), but also to re-
cover the proper behavior in the noninteracting limit.

4 Doping and temperature dependence
of the spin susceptibility

In Figure 7 the density of states (DOS) calculated through
relations (14, 15) is plotted as a function of the energy ω,
having fixed the temperature at T = 100 K and for the pa-
rameters Ud/V = 5, εd/V = −1 and εp/V = 0. The DOS
presents three sharp peaks around the atomic levels εd, εp
and εd + U . The sharpness of the peaks reflects the VHS
introduced by the nearest-neighbours hopping term. The
arrow indicates the Fermi level position EF in correspon-
dence of the hole density x = 0.26. At increased doping,
EF approaches the VHS and lies on it at x = xc ' 0.26,
then moves away from it for x > xc. As shown, due to
the presence of strong-correlation effects, the VHS is not
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Table 1.

Irreducible vertices in the particle-hole channel

Γ
(0)
σσ̄ (iων) =

h
1
Zd

e−β(2(εd−µ)+Ud) −


ndσ̄

�2
i
δ(ων)

Γ
(0)
σσ (iων) =

h

ndσ̄

� �
1−



ndσ̄

��
− 1

Z2
d

e−β(εd−µ)(1 + e−β(2(εd−µ)+Ud))
i
δ(ων)

+ 1
Z2
d

(e−β(2(εd−µ)+Ud) + e−2β(εd−µ))
h

1
(iων−Ud) + 1

(iων+Ud)

i

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Doping, x

15.5

19.5

23.5

27.5

31.5

χ
T=100Ks

Fig. 8. The spin magnetic susceptibility χs(0, 0) (in unit of
V −1) as a function of the doping x, for the same parameters
as in Figure 1.

correlated with the half-filling point, but occurs at a finite
doping, depending on the interaction Ud/V . In the ap-
proximation in which only first-order cumulants are taken
into account in the resummation of the Dyson equation
for the Green’s functions, the effect of the correlation Ud
is essentially that of distributing the spectral weight de-
termined by the hybridization Vpd with a consequent shift
of the Fermi level with respect to the Van Hove singular-
ity. Other effects of the correlation (such as the formation
of the Zhang-Rice singlets) will appear only when higher-
order cumulants or corrections to the self-energy are taken
into account.

We would like to stress that the parameters Ud and εd
have been fixed to fit the experimental results observed in
La2−xSrxCuO4 [1], anyway in the following discussion the
behavior of the physical quantities remains qualitatively
the same at varying Ud/V and εd/V , apart the value of
xc which may differ significantly from that observed ex-
perimentally.

Let us discuss the numerical results for the static and
uniform spin susceptibility χs(0, 0). The dependence on x
of χs is depicted in Figure 8, for renormalized parameters
Ud/V = 5, εd/V = −1 e εp/V = 0, while the temper-
ature has been fixed at T = 100 K. As the system is
doped away from half-filling (x = 0) the susceptibility in-

0 50 100 150 200 250 300
Temperature, T[K]

15

20

25

30

x=0.26

x=0.24

x=0.22
x=0.2

x=018

χ s

Fig. 9. The spin magnetic susceptibility χs(0, 0) (in unit of
V −1) as a function of the temperature T for various values of
the doping x < xc and Ud/V = 5, εd/V = −1.

creases, reaches a maximum at xc ' 0.26, then decreases.
This behaviour is in qualitative agreement with experi-
ments performed on various ceramic compounds, such as
La2−xSrxCuO4 [1,2] and YBa2Cu3O6+x [3], where a broad
peak at x ' 0.26 is observed. The x−dependence of the
spin magnetic susceptibility can be explained according to
a Van-Hove scenario [11,23]. Since χs reflects the thermal
average of the density of states at the Fermi level N(EF),
the presence of a maximum in χs for the critical dop-
ing xc can be related to the fact that, upon doping with
holes, the Fermi level approaches the Van Hove singularity
(VHS) arising from the nearest-neighbour hybridization
term, and lies on it at x = xc. Interpretation of the exper-
imental results obtained in reference [1] for LSCO in terms
of a sharp feature in the density of states, consistent with
photoemission spectroscopy data on cuprates [8,9], has
been primarily advanced by Thoma et al. [24]. The con-
sistency of the thermodynamical data with the presence
of a VHS near the Fermi level was also shown by Newns
et al. [23] by considering a p-d like model in the frame-
work of the slave-boson mean-field theory in the limit of
large U .

To have a better understanding of the change of
χs with doping, in Figures 9 and 10 we report χs(T )
versus temperature for different values of the doping x.
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Fig. 10. The spin magnetic susceptibility χs(0, 0) (in unit of
V −1) as a function of the temperature T for various values of
the doping x > xc and Ud/V = 5, εd/V = −1.

As shown, upon doping with holes χs(T ) increases till a
critical value xc(' 0.26) and then behaves in the reverse
for x ≥ xc. This behavior well reproduces the experimen-
tal data from reference [1]. Finally, as a function of T , in
the high-temperature region χs exhibits a Curie-like be-
haviour. On the other hand, in the low-temperature region
an upturn in χs occurs for x ' 0.26, while a downturn is
achieved for x 6= xc = 0.26. The upturn in χs(T ) at low T
indicates the influence of the VHS in the density of states
when the Fermi-level EF is very close to the singularity.
By contrast, when x is different from xc, EF lies away from
the VHS and the contribution of the density of states to
the spin susceptibility decreases as the temperature is low-
ered. The temperature of the maximum Tm as a function of
the doping decreases at increasing doping, tending to zero
at the critical doping xc. This is illustrated in Figure 11
where Tm is plotted as a function of x. Our theoretical re-
sults qualitatively reproduce the experimental results for
La2−xSrxCuO4 [1,2] and YBa2Cu3O6+x [3].

5 Summary and discussion

We have investigated the doping and the temperature de-
pendence of the spin susceptibility in the p-d model, by
using a generalized cumulant expansion which seems ap-
propriate to study physical quantities in the optimal and
overdoped region. In the study of the spin susceptibility, at
varying doping, an upturn or a downturn in χs is achieved
as T is lowered, whose origin is ascribed to a band effect
such as VHS, in combination with the shift of the Fermi
level with respect to it, due to electron correlations: it has
been pointed out that the DOS has a peak near the Fermi
level due to a VHS for a finite value of the doping and this
peak runs away from the Fermi level as x→ 0. The results
show that upon doping with holes, χs exhibits a maximum
at a certain critical value xc, at a fixed temperature. As
a function of temperature the magnitude of χs increases
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Fig. 11. The temperature Tm (in kelvin), where χs(0, 0) has a
maximum, reported as a function of the doping x, for Ud/V = 5
and εd/V = −1. The behavior of Tm is very similar to the
experimental results from reference [1].

with doping and exhibits a maximum that broadens and
shifts to lower temperature for x ≤ xc. The opposite be-
haviour is observed for x > xc. It is worth stressing that
at the critical doping xc the Fermi level lies on a Van Hove
singularity in the density of states.

In conclusion, in the framework of the p − d model
a Van Hove scenario describes well some of the “un-
usual” magnetic properties observed in the normal state of
HTCS, in particular when approaching the analysis from
the paramagnetic metallic phase (large x) rather than
the antiferromagnetic (AF) phase and the theoretical re-
sults qualitatively reproduce the experimental scenario for
La2−xSrxCuO4 [1,2] and YBa2Cu3O6+x [3]. Anyway, at
low doping the presented perturbation approach under-
rates p− d spin fluctuations a la Zhang-Rice which domi-
nate the physics in the quasi-atomic limit, and the simple
Van Hove scenario is not sufficient to describe the physics
of cuprates. In this region the natural starting point would
be the inclusion of the spin-fluctuations’ corrections to the
self-energy. Results concerning this point require rather
long analytical and numerical calculations and will be re-
ported elsewhere. Nonetheless, preliminary results indi-
cate that the AF spin-exchange affects the structure of the
Van Hove singularity leading to an opening of a pseudogap
in the density of states, near the chemical potential, that
varies with doping and temperatures. Work is in progress
along this line.
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